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Abstract

The spatial architecture of the lymphoid tissue in follicular lymphoma (FL) presents

unique challenges to studying its immune microenvironment. We investigated the

spatial interplay of T cells, macrophages, myeloid cells and natural killer T cells using

multispectral immunofluorescence images of diagnostic biopsies of 32 patients. A

deep learning‐based image analysis pipeline was tailored to the needs of follicular

lymphoma spatial histology research, enabling the identification of different immune

cells within and outside neoplastic follicles. We analyzed the density and spatial co‐
localization of immune cells in the inter‐follicular and intra‐follicular regions of

follicular lymphoma. Low inter‐follicular density of CD8+FOXP3+ cells and co‐
localization of CD8+FOXP3+ with CD4+CD8+ cells were significantly associated

with relapse (p = 0.0057 and p = 0.0019, respectively) and shorter time to pro-

gression after first‐line treatment (Logrank p = 0.0097 and log‐rank p = 0.0093,

respectively). A low inter‐follicular density of CD8+FOXP3+ cells is associated with
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increased risk of relapse independent of follicular lymphoma international prog-

nostic index (FLIPI) (p = 0.038, Hazard ratio (HR) = 0.42 [0.19, 0.95], but not in-

dependent of co‐localization of CD8+FOXP3+ with CD4+CD8+ cells (p = 0.43). Co‐
localization of CD8+FOXP3+ with CD4+CD8+ cells is predictors of time to relapse

independent of the FLIPI score and density of CD8+FOXP3+ cells (p = 0.027,

HR = 0.0019 [7.19 � 10−6, 0.49], This suggests a potential role of inter‐follicular
CD8+FOXP3+ and CD4+CD8+ cells in the disease progression of FL, warranting

further validation on larger patient cohorts.

K E YWORD S

CD4+CD8+, CD8+FOXP3+, deep learning, follicular lymphoma, image analysis, multispectral
immunofluorescence

1 | INTRODUCTION

In the western world, follicular lymphoma (FL) is the second most

common subtype of non‐Hodgkin lymphoma, accounting for between
20% and 25% of cases.1, 2 The disease tends to follow an indolent

remitting and relapsing course, with great individual variability. While

patients achieving a sustained response to first‐line treatment show
prolonged survival, those who fail to achieve a response or relapse

early after the end of the therapy have an adverse outcome.3–6 Early

identification of refractory/early relapsing cases and investigation of

the biological basis is currently a major challenge.7

The tumor microenvironment (TME) plays a key role in the

clinical course of FL. Two immune response gene expression signa-

tures, IR1 and IR2, were identified to be predictive of long and short

survival, respectively in FL.8 The IR1 signature included genes

encoding both T cells and macrophage molecules, whereas the IR2

comprised genes expressed in macrophages, dendritic cells or both.

This and subsequent molecular studies,8–10 suggested the potential

importance of immune surveillance in FL raising the possibility of

novel immune approaches. The role of immune T cells,11–18 macro-

phages,14,15,19–21 NK/T cells22,23 and myeloid cells24,25 were inves-

tigated in FL generating inconsistent results. These studies were

conducted on a different cohort of patients who might have different

characteristics and analyzed using different computational pipelines

that could potentially hamper consistency and comparison of the

prognostic power of the different immune cells groups. Moreover,

the composition of the intra‐follicular areas, containing neoplastic

cells, are distinct from the inter‐follicular areas. However, most of the
previous studies considered the FL TME as one homogenous

ecosystem. The pattern of immune infiltration in these two sites is

predictive of outcome.15,16,26 Thus, investigating the spatial interac-

tion of immune cells in the two regions could provide new insight into

the biology of FL. However, no computational image analysis soft-

ware tailored to these cell compartments are available.

Recently, deep learning has gained a surge of interest in digital

pathology27 demonstrating its relevance to predict the diagnosis of

several malignant diseases including Lymphoma.28–30 It has been

shown that this technology also serves as a discovery tool to identify

novel cell populations associated with tumor progression. Automated

microscopy analysis is a more reliable approach to enumerate infil-

trating cell populations but there has been limited use of deep‐
learning analysis to study the microenvironment in FL.31,32

Thus, we decided to use multispectral immunofluorescence (M‐
IF) images containing 15 immune cell markers to (1) develop a deep

learning‐based method to identify cell phenotypes, (2) develop cell

distribution and spatial analysis pipeline tailored to the tissue com-

partments of FL, and (3) identify novel immune phenotypes associ-

ated with time to progression (TTP). Such an integrated, high

throughput approach enabled us to identify the clinically relevant

spatial distribution of immune cell subsets in the inter‐follicular area
of FL TME.

2 | MATERIALS AND METHODS

2.1 | Cohort study

Patients diagnosed at Papa Giovanni XXIII Hospital (Bergamo, Italy)

with grade I‐IIIa FL between 01‐Jan‐2006 and 31‐Dec‐2015, treated
with standard R‐CHOP or R‐CVP and with the availability of the

diagnostic surgical biopsy were eligible for this study. Clinical infor-

mation of 39 patients was gathered from the electronic charts. The

diagnosis of FL was confirmed by three haematopathologists (Teresa

Marafioti [TM], Alan Ramsay [AR], and Sabine Pomplun [SP]); who

reviewed independently the morphology assessed by using H&E

staining. The relevant immunostaining evaluated included CD20,

CD3, BCL‐2, BCL‐6, CD10, CD21, MIB‐1. All cases expressed BCL‐2,
CD10 and BCL‐6 and no areas of diffuse growth pattern were pre-

sent. The diagnosis of FL, followed the criteria of the revised fourth

edition of the WHO classification of tumors of hematopoietic and

lymphoid tissues. The exclusion criteria applied included: stage I

disease, bendamustine therapy and rituximab maintenance. Seven

cases were excluded of which six showed suboptimal tissue sections

affecting staining, and the additional case had received bendamustine

treatment. The final number of analyzed cases was 32. The study was

approved by the Ethics Committee (approval number REG. 197/17)
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and performed in accordance with the ethical standards of the 1964

Helsinki declaration and its later amendments. All patients provided

written informed consent. Time to progression, measured from

diagnosis to relapse/progression time, was used as a clinical endpoint.

2.2 | Antibodies panels and multispectral
immunofluorescence

Two to four micron thick formalin‐fixed paraffin‐embedded tissue

sections of 32 FL and 4 normal tonsils were subjected to M‐IF
applying a series of antibodies (Supplementary Table 1) panels

detailed below to study specific immune‐cell populations: (a) Immune
T cells: CD4/CD8/FOXP3/PD‐1; (b) Tumor‐associated macrophages:

CD68/CD163/CD206/PD‐L1; (c) Myeloid cells: CD8/CD11b/CD14/

CD15 and (d) Natural killer T cells: CD8/Granzyme B (Granz B)/

Granulysin/CD16/CD56.

Before data collection, experimental conditions (e.g., primary

antibody dilution and time of incubation, order of antibodies immu-

nostaining and fluorophores selection) of M‐IF staining were opti-

mized and validated against singleplex chromogenic immunostaining

protocols on consecutive sections of reactive tonsil and classical FL

specimens retrieved from the diagnostic files of TM, AR and SP's

institution. Staining was carried out on a Leica BOND RX automated

immunostainer (Leica Microsystems, Milton Keynes, UK) using tyr-

amide signal amplification (TSA)‐based Opal method (Opal 7‐Color
Automation immunohistochemistry Kit, Akoya Biosciences, Marl-

borough, MA, USA; Catalog No. NEL811001 KT). SOPs for each an-

tibodies panels has been compiled and can be provided upon request

to the corresponding authors.

2.3 | Statistical analysis

All statistical analyses were carried out using the Python program-

ming language. All correlation values were measured using the non‐
parametric Spearman test. The p‐values were computed using the

two‐sided unpaired, non‐parametric Wilcoxon method, considering

p < 0.05 as significant. To correct for multiple testing, we applied

Benjamini‐Hochberg (BH) method. Time to progression was esti-

mated using the Kaplan–Meier method and two‐tailed log‐rank test
using Lifelines (v0.25.4) Python package.33 Multivariate Cox regres-

sion analysis was performed using the Lifelines (v0.25.4) Python

package.33

2.4 | Code availability

All methods and analyses were implemented in Python. For repro-

ducibility and ease of sharing, the code and its dependencies are

packed into a Docker container. The code runs on both local and

high‐performance clusters. The code is accessible upon request to

the corresponding author or the first author.

3 | RESULTS

3.1 | Patient clinical characteristics

The clinical characteristics of the 32 patients included in this study

are summarized in Table 1. The histological grade for all patients who

relapsed varied between grades 1 and 2, but only one patient showed

a focal grade 3A pattern. After a median follow‐up of 10.4 years

(range 0.25–15.2 years), 23 patients remained alive. A total of nine

deaths occurred and the causes were related to the progression of FL

(3 cases); transformation to diffuse large B‐cell lymphoma (1 case);

secondary cancer (1 case), unknown (occurring >10 years post‐
treatment; 2 cases), complication of allogeneic stem‐cell trans-

plantation (1 case) and acute hepatitis (1 case). Fifteen patients

relapsed/progressed after a median of 2.83 years (range 0.6–

14.8 years). The remaining 17 patients did not relapse after a median

observation of 11.5 years (range 0.25–14.8 years; Figure 1A) with 4

deaths not related with disease progression.

3.2 | Deep learning for immune phenotyping in
multispectral immunofluorescence images

The immune spatial phenotypes were investigated using four M‐IF
panels for T cells, macrophages, myeloid cells, and natural killer T

(NK/T) cells. The M‐IF images of diagnostic biopsies were acquired

using the VECTRA 3 platform and the regions of interest defined as

TAB L E 1 Patient characteristics

Clinical characteristics All patients (N; %)

All patients 32 (100)

Age

Median (range) 50.9 (30.5 – 77.9)

≥60 10 (31.3)

Gender

Male 16 (50)

Ann Arbor stage

III – IV 29 (90.6)

Bone marrow involvement

Yes 21 (65.6)

FLIPI

Low 3 (9.4)

Intermediate 16 (50)

High 13 (40.6)

TREATMENT

R‐CHOP 26 (81.3)

R‐CVP 6 (18.7)
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F I GUR E 1 Details of the study cohort and M‐IF images. A Consolidated Standards of Reporting Trials (CONSORT) Diagram. B Illustrative
image showing tile selection from a tissue section using VECTRA 3 platform. C Sample images from the four panels used in this study.

Multispectral immunofluorescence images were acquired using VECTRA 3 with multiple markers in each panel. The scale bar is 10 μm.
D Deconvoluted images for the immune T cell panel M‐IF image in C.
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“tiles” were selected from different areas to capture the heteroge-

neity in the tissue section (Figure 1B–D).

Though, M‐IF is a high‐throughput approach to characterize

immune phenotypes landscape in tissue sections, the intermixing of

colors deters accurate identification of cells and discernment of

touching cells. In a computerized analysis of M‐IF, color (intensity) is
the main discriminating feature between different cell phenotypes.

Panels could have different colors (Figure 1C), and a supervised

model trained on M‐IF data from one panel might not be generalized

to another. However, irrespective of the number of markers/colors

used in the M‐IF panels, the deconvoluted images in all panels have

only brown (positive) and blue (DAPI, negative) colors (Figure 1D).

This suggests that a model trained on deconvoluted images from one

panel data could be generalized to the other panels. Thus, our newly

developed deep learning image analysis pipeline systematically de-

tects and classifies cells in M‐IF images from the deconvoluted im-

ages (Figure 2A and Methods in Supplementary Data).

3.3 | Image and spatial analysis tailored to follicular
lymphoma cellular compartments

The composition and spatial organization of immune cells in FL was

analyzed in the intra‐follicular (within follicles) and inter‐follicular
(outside follicles) regions, by developing a tissue and follicles seg-

mentation pipeline (Figure 2B and Methods in Supplementary Data).

This approach was designed to investigate whether distinct patterns

of immune cell infiltrates in the two micro‐ecosystems represent a
robust tool to predict clinical outcome.

To quantify cells spatial co‐localization and immune cell

composition, we applied a Morisita‐Horn index34–36 to the regions

within and outside the follicles separately (Figure 2C and Methods in

Supplementary Data) and demonstrated differences between the two

cellular compartments.

3.4 | Deep learning models accurately map single
cells in multispectral immunofluorescence images

To enable the automated detection and classification of diverse cell

types in M‐IF images, we developed a deep learning pipeline

(Figure 2A). The number of cells detected by the proposed deep

learning method significantly correlated with the cells annotated by

the expert pathologists (Spearman r = 0.94, p = 1.82 � 10−12

Figure 3A). Moreover, the proposed cell detection method achieved

precision, recall and F1‐score values of 0.85, 0.86, and 0.86,

respectively, on separately held test data (Supplementary Table 2).

For cell classification, we obtained an area under the curve (AUC)

of 0.995 (Supplementary Figure 1a) on separately held test data.

Only 193 cells out of 10, 134 cells were wrongly classified

(Supplementary Figure 1b). Visualization of the features learned by

the convolutional neural network using uniform manifold

approximation and projection (UMAP) dimensionality reduction

demonstrated that cells of different classes are separated

(Figure 3B and Supplementary Figure 1c).

The deep learning models were trained on the immune T cells

panel data (Supplementary Table 2) and the models generalize to the

other panels. The density of CD8+ cells across multiple panels is

significantly correlated (Figure 3C–D and Supplementary Figure 1d)

and cell classification AUC of 0.998 was obtained on single‐cell
collected from the macrophages and NK/T cell panels, panels un-

seen during model training (Supplementary Figure 1e–f). The deep

learning models and co‐expression analysis (Figure 2A and Methods

in Supplementary Data) allowed us to identify different cell pheno-

types in each panel (Figure 3E).

3.5 | Decreased inter‐follicular CD8+FOXP3+ cells
is associated with relapse

To identify prognostic cell types outside the neoplastic follicles, we

first computed cell density. A significantly lower density of CD8

+FOXP3+ cells outside the neoplastic follicles was found in diag-

nostic samples of patients who later relapsed, compared to those

patients who did not relapse (BH corrected p = 0.0057, Figure 4A).

Using Kaplan‐Meier estimates, increased CD8+FOXP3+ cells outside

the neoplastic follicles was significantly associated with improved

TTP using a median split (high 50% vs. low 50%: Logrank p = 0.0097,

Figure 4B). The CD8+FOXP3+ cells accounted for 1.6% and 3.4% of

CD8 marker and FOXP3 marker expressing immune cells, respec-

tively (Figure 4C,D).

We also analyzed the association of the density of the remaining

immune cells listed in Figure 3E in the inter‐follicular and intra‐
follicular regions of FL with disease relapse and patient TTP (Sup-

plementary Figures 2‐3 and Supplementary Tables 3‐4). However,
none of these cells was significantly associated with disease relapse

and patient TTP after applying multiple test corrections.

3.6 | Clinical relevance of immune cell
co‐localization

To understand the spatial interaction of the inter‐follicular CD8

+FOXP3+ cells with the other T cell subsets in the TME, we first

explored their spatial neighborhood using nearest neighbor (NN)

analysis (Figure 5A–B). For each CD8+FOXP3+ cell, we identified the

NN cell phenotype and computed the distance in the tissue space

(Figure 5A). In the inter‐follicular region, CD4+CD8+ and CD4

+FOXP3+ NN cells tend to localize closer to CD8+FOXP3+ cells

than other T cell subsets including CD4‐CD8+FOXP3‐, CD4+CD8‐
FOXP3‐, and CD4‐CD8‐FOXP3+ cells.

We then asked if the co‐localization of these T cell subsets with

CD8+FOXP3+ cells in the inter‐follicular region is associated with

relapse and TTP. To quantify spatial co‐localization, we computed the
Morisita‐Horn index, which increases in value if there is a high degree
of spatial colocalization between two variables (Methods in

HAGOS ET AL. - 5



F I GUR E 2 Computational deep learning and image processing pipelines. A Multi‐stage deep learning cell detection and classification
pipeline for multispectral immunofluorescence (M‐IF). Cell detection and classification were applied to the N deconvoluted images. For cell
detection, we applied CONCORDe‐Net (Methods in Supplementary Data). CONCORDe‐Net generates the x and y locations of the center of
the nucleus of the cells. A patch centered on these cells’ location was extracted and fed to a VGG style convolutional neural network based cell
classifier (conv = convolution, maxp = maxpooling layer). The classifier generates the probability of the input patch being positive (p+ve) and
negative (p‐ve) for a marker. The class of the cell was assigned to positive (p+ve ≥ p‐ve) or negative (p+ve < p‐ve). This repeats for the N
deconvoluted images. The positive cells from the N deconvoluted images were mapped onto one plane for co‐expression analysis. Then, cells
were spatially mapped on M‐IF images. The bar indicates a 10 μm resolution. B A diagram of tissue and follicles segmentation. Follicles are
manually segmented by an expert pathologist. Morphological ops = morphological operations. C Spatial Voronoi tessellation of within and

outside follicles tissue compartments for Morisita‐horn index spatial analysis. Following the follicle segmentation in (B), the area within the
follicle and outside follicle were divided into smaller polygons called “Voronoi”. Using location cells data in (A) cells can be mapped onto these
polygons to apply spatial analysis

6 - HAGOS ET AL.



F I GUR E 3 Evaluation and validation of deep learning models. A Correlation between the number of cells annotated by an expert and the
number of cells detected by deep learning (DL). A dot represents a human‐annotated rectangular region, which contains around 450 cells. B
Two‐dimensional representation of deep learned features after Uniform manifold approximation and projection (UMAP) dimensionality
reduction along with their marginal distributions. Negative and positive classes represent cells negative and positive for a marker, respectively.
C, D Deep learning model validation. The deep learning models were trained on immune T cell panel data. The trained model was then applied

to all panels. The density of CD8+ cells (cells per 1000 μm2) across different panels was significantly correlated. A dot represents a sample or
patient. All correlation values were computed using a non‐parametric Spearman correlation. E After detecting cells on the deconvoluted
images, using the proposed co‐expression analysis (Methods in Supplementary Data), we were able to spatially map cells expressing single or
multiple markers in all panels, which allows us to visually validate the deep learning models and co‐expression analysis on m‐IF images. The

scale bar is 10 μm
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Supplementary Data). The inter‐follicular co‐localization of CD8

+FOXP3+ with CD4+FOXP3+ cells was not associated with relapse

status (BH corrected p = 0.142, Supplementary Figure 4a) and pa-

tient TTP (Logrank p = 0.06, Supplementary Figure 4b) using Kaplan‐

Meier estimates. However, lower degree of inter‐follicular co‐
localization of CD8+FOXP3+ with CD4+CD8+ cells was associated

with relapse (BH corrected p = 0.0019, Figure 5C). Using Kaplan‐
Meier estimates, a higher degree of co‐localization of CD8+FOXP3

F I GUR E 4 Prognostic cell subsets outside the neoplastic follicles. A Boxplot showing difference in density of CD8+FOXP3+ cells (cells/

1000 μm2) outside follicles between relapsed (n = 15) and not relapsed (n = 17). B Kaplan‐Meier curves illustrating time to progression (TTP)
of patients dichotomized using median CD8+FOXP3+ cells density outside follicles. C The percentage of CD8+ and FOXP3+ T cells expressing
both CD8 and FOXP3 markers. D Sample illustrative image containing CD8+FOXP3+ cells. The arrows point to the center position of CD8
+FOXP3+ cells detected by our deep learning method on M‐IF and deconvoluted images. The scale bar represents 10 μm. For statistical
comparisons among groups, a two‐sided, nonparametric, unpaired, Wilcoxon signed‐rank test was used, unless stated otherwise. To correct for
multiple testing, we applied Benjamini‐Hochberg (BH)
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F I GUR E 5 Prognostic spatial co‐localization of cell populations outside the neoplastic follicles. A Graphical representation of CD8
+FOXP3+ cells nearest neighbor (NN) cells outside the neoplastic follicles. B The distribution of the distance of NN cells of different

phenotypes. C Boxplot showing the difference in co‐localization of CD8+FOXP3+ with CD4+CD8+ cells outside follicles between relapsed
(n = 15) and not relapsed (n = 17). D Kaplan‐Meier curves illustrating time to progression (TTP) of patients dichotomized using median co‐
localization of CD8+FOXP3+ with CD4+CD8+ cells outside follicles. E Forest plots showing multivariate Cox regression analyses. Continuous
values were used for the density and spatial localization parameters. Follicular lymphoma international prognostic index (FLIPI). For statistical
comparisons among groups, a two‐sided, nonparametric, unpaired, Wilcoxon signed‐rank test was used, unless stated otherwise. To correct for
multiple testing, we applied Benjamini‐Hochberg (BH)
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+ with CD4+CD8+ cells was associated with longer TTP (Logrank

p = 0.0093, Figure 5D).

3.7 | Decreased inter‐follicular CD8+FOXP3+ cells
density and spatial co‐localization of CD8+FOXP3+
with CD4+CD8+ cells are predictive of time to
progression independent of follicular lymphoma
international prognostic index

To investigate whether the inter‐follicular density of CD8+FOXP3+
and co‐localization of CD8+FOXP3+ with CD4+CD8+ are predictors

of TTP independent of follicular lymphoma international prognostic

index (FLIPI), we applied multivariate Cox regression analysis. For the

regression analysis, continuous values of the density and spatial co‐
localization scores were used. Tumors with low inter‐follicular co‐
localization of CD8+FOXP3+ cells with CD4+CD8+ were at a

significantly increased risk of relapse compared with tumors with a

higher inter‐follicular co‐localization of these cell types (p = 0.027,

Hazard ratio (HR) = 0.0019 [7.19 � 10−6, 0.49], Figure 5E) that was

independent of FLIPI and density of CD8+FOXP3+ cells. Moreover,

both inter‐follicular CD8+FOXP3+ cells density and co‐localization
of CD8+FOXP3+ cells with CD4+CD8+ were not associated with

FLIPI scores (Supplementary Figure 5a,b). However, there is a posi-

tive correlation between CD8+FOXP3+ density and co‐localization
of CD8+FOXP3+ with CD4+CD8+ (Supplementary Figure 5c).

Similarly, a low inter‐follicular density of CD8+FOXP3+ was asso-

ciated with increased risk of relapse independent of FLIPI (p = 0.038,

HR = 0.42 [0.19, 0.95], Supplementary Figure 5d), but not indepen-

dent of co‐localization of CD8+FOXP3+ with CD4+FOXP3+ cells

(p = 0.43, Figure 5E).

4 | DISCUSSION

In this study, we developed a deep learning‐based image processing

pipeline for M‐IF images to decipher the immune microenvironment

in FL. To the best of our knowledge, this is the first study to analyze

the distribution and spatial interaction of immune cells in the inter‐
and intra‐follicular compartments of FL using high throughput M‐IF
images and deep learning image analysis. In FL, the abundance and

distribution of immune cells within and outside neoplastic follicles

are distinct and heterogeneous,26 and thus the spatial interaction of

the cells. The combination of M‐IF and deep learning‐based image

analysis focused on FL compartments enabled us to identify novel

prognostic cell populations and spatial patterns in FL.

Our study shows that in FL, the inter‐follicular CD8+FOXP3+ T

cells are prognostic and positively correlate with patients TTP. Even

though these cells account for a small fraction of CD8+ immune T cells

in the TMEof FL, it has been shown that rare cell types such as antigen‐
specific T cells can play a crucial role in the development of cancer.37,38

In 1970 Gershon and Kondo described a pool of CD8+ regulatory

T cells which support tumorigenesis.39 This type of cells was

subsequently described in prostate,40,41 colon42 and non‐small cell
lung cancer.41 In a mice model, Mayer et. al also showed that CD8

+FOXP3+ cells have a light suppressive function.43 However, other

studies support our results and showed that CD8+FOXP3+ cells have

anti‐tumor cytotoxic activity. Using flow cytometry on mice treated

with GMCSF secreting HER‐2/neu vaccine, CD8+FOXP3+ T cells

were abundantly found in regressing and immunogenic tumors.44 CD8

+FOXP3+ is a phenotype for anti‐tumor T cells, and such cells have a
similar expression profile of activated T cells.43,44

Triggering an effective immune response promotes the expan-

sion of CD8+FOXP3+ lymphocytes.44 In a mice model, Le et al.

demonstrated that CD4+ T cells promote the expansion of tumor‐
specific T cells such as CD8+FOXP3+ cells by secreting stimulatory

cytokines like IL‐2 and TGF‐β.44 Moreover, K. Y et al. showed that

CD8+FOXP3+ T cells are immunosuppressive, but, their inhibitor

function could be altered using Toll‐Like Receptor (TLR)‐8
signaling40,45 suggesting this could be utilized by immunotherapeutic

strategies in cancer.40,45 Furthermore, it is reported that TLR

signaling pathways interact with RCHOP immunochemotherapy that

is used in FL.46 Further functional studies are needed to understand

whether the CD8+FOXP3+ T cells in the TME of FL have an “innate”

anti‐tumor function or this is modulated by exposure to the immu-

nochemotherapy treatment.

To investigate the spatial interaction of inter‐follicular CD8

+FOXP3+ cells with other cell types identified by our approach, we

applied spatial co‐localization analysis (Figure 2C and Methods in

Supplementary Data). We found that higher co‐localization of CD8

+FOXP3+ cells with CD4+CD8+ in the inter‐follicular regions is

associated with favorable TTP in FL. Previous studies described CD4

+CD8+ cells as effector anti‐tumor T cells in a series of tumors for

example, cutaneous T‐cell lymphoma,47,48 nodular lymphocyte‐
predominant Hodgkin lymphoma,49 and melanoma.48 The CD4

+CD8+ T cells have a high IL‐2 cytokine secretion profile47 and

interestingly, a high level of IL‐2 is reported to enhance the cytotoxic
activity of CD8+ Tregs cells.50 These results suggest that CD4+CD8
+ cells might have boosted the anti‐tumoral activity of CD8+FOXP3
+ cells through an IL‐2 dependent pathway and thus resulting in a

favorable patient outcome.

In this study, we showed that the combination of M‐IF, deep
learning and regional spatial analysis is a promising strategy to

identify novel immune cell phenotypes in FL that could stratify

relapsed versus not relapsed FL patients, and predict TTP. However,

our study has some limitations. Firstly, the data used to train and

evaluate the deep learning models were generated from the same lab

and device, which could impact the generalizability of the models.

Secondly, the manual annotation of the neoplastic follicles is labo-

rious, thus an automated deep learning methodology is a valuable

development. Moreover, the small sample size and the highly variable

indolent nature of FL51 could introduce bias to the results.

In summary, our study showed that low density of CD8+FOXP3
+ cells or low co‐localization of CD8+FOXP3+ with CD4+CD8+
outside the neoplastic follicles (Figure 6) is associated with relapse

and shorter TTP in FL patients treated with R‐CHOP or R‐CVP. The
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inter‐follicular density of CD8+FOXP3+ and co‐localization of CD8

+FOXP3+ with CD4+CD8+ appear to be predictive of TTP inde-

pendent of FLIPI score, and combining these features with FLIPI

scores could improve prognostication. These findings require vali-

dation on a large cohort of FL patients treated with the same or

different treatment regimens.

ACKNOWLEDGEMENTS

T.M. is supported by the UK National Institute of Health Research

University College London Hospital Biomedical Research Center, A.U.

A. is supported by Cancer Research UK‐UCL Center Cancer Immuno‐
therapy Accelerator Award. Y.Y. acknowledges funding from Cancer

Research UK Career Establishment Award (C45982/A21808), Breast

Cancer Now (2015NovPR638), Children’s Cancer and Leukaemia

Group (CCLGA201906), NIH U54 CA217376 and R01 CA185138,

CDMRP Breast Cancer Research Program Award BC132057, CRUK

Brain Tumor Awards (TARGET‐GBM), European Commission ITN

(H2020‐MSCA‐ITN‐2019), Wellcome Trust (105104/Z/14/Z), and

The Royal Marsden/ICR National Institute of Health Research

Biomedical Research Centre. GG and RLR are supported by Gilead

Fellowship Program (Ed. 2017). Y.B.H. is funded by the European

Union’s Horizon 2020 research and innovation program under the

Marie Sklodowska‐Curie grant agreement No766030.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR’S CONTRIBUTIONS

Teresa Marafioti, Giuseppe Gritti and Yinyin Yuan conceived and

designed the study; Yeman B Hagos developed the image analysis,

deep learning pipelines, spatial analysis pipeline and performed

statistical analysis. Ayse U Akarca optimized and digitized the M‐IF
images. Giuseppe Gritti, Alessia Moioli and Andrea Gianatti

collected the clinical cohort and provided the tissue sections. Alan

Ramsay, Sabine Pomplun and Teresa Marafioti reviewed the patients

and annotated single cells and follicules; Yeman B Hagos, Ayse U

Akarca, Yinyin Yuan, Giuseppe Gritti and Teresa Marafioti wrote,

edited and reviewed the manuscript. Riccardo L Rossi helped review

the analyzed data. Alessandro Rambaldi and David Linch helped re-

view and edit the manuscript. Victoria Ngai helped in annotating

immune cells and follicles. Sergio A. Quezada and Alessandro Ram-

baldi contributed to reviewing the data and the manuscript. All au-

thors gave final approval for publication. Christopher Mcnamara

helped interpreting the data in the context of the clinical disease.

Teresa Marafioti, Giuseppe Gritti and Yinyin Yuan take full re-

sponsibility for the work as a whole, including the study design, ac-

cess to data and the decision to submit and publish the manuscript.

DATA AVAILABILITY STATEMENT

The data that support the findings will be available upon request

from the corresponding author.

ORCID

Yeman B. Hagos https://orcid.org/0000-0002-0357-6297

PEER REVIEW

The peer review history for this article is available at https://publons.

com/publon/10.1002/hon.3003.

REFERENCES

1. Gritti G, Pavoni C, Rambaldi A. Is there a role for minimal residual

disease monitoring in follicular lymphoma in the chemo‐

F I GUR E 6 Graphical summary. The cartoon is a map of the two FL immune ecosystems: within and outside the neoplastic follicles

indicating the clinically relevant cell co‐localization and the density of immune cell subsets

HAGOS ET AL. - 11

https://orcid.org/0000-0002-0357-6297
https://orcid.org/0000-0002-0357-6297
https://publons.com/publon/10.1002/hon.3003
https://publons.com/publon/10.1002/hon.3003
https://orcid.org/0000-0002-0357-6297


immunotherapy era? Mediterranean Journal of Hematology and Infec-
tious Diseases. 9(1). Universita Cattolica del Sacro Cuore; 2017.

https://doi.org/10.4084/MJHID.2017.010

2. A Carbone, Roulland S, Gloghini A, et al. Follicular lymphoma, Nat
Rev Dis Prim. 2019;5(1):83. https://doi.org/10.1038/s41572‐019‐
0132‐x

3. González‐Rincón J, Mendez M, Gomez S, et al. Unraveling trans-

formation of follicular lymphoma to diffuse large B‐cell lymphoma.
PLoS ONE. 2019;14(2):e0212813. https://doi.org/10.1371/JOURNAL.
PONE.0212813

4. Tarella C, Gueli A, Delaini F, et al. Rate of primary refractory disease

in B and T‐Cell non‐Hodgkin’s Lymphoma: correlation with long‐
term survival. PLoS ONE. 2014;9(9):e106745. https://doi.org/10.
1371/journal.pone.0106745

5. Casulo C, Byrtek M, Dawson KL, et al. Early relapse of follicular

lymphoma after rituximab plus cyclophosphamide, doxorubicin,

vincristine, and prednisone defines patients at high risk for death: an

analysis from the National LymphoCare Study. J Clin Oncol. 2015;
33(23):2516‐2522. https://doi.org/10.1200/JCO.2014.59.7534

6. Luminari S, Manni M, Galimberti S, et al. Response‐adapted post-

induction strategy in patients with advanced‐stage follicular lym-

phoma: the FOLL12 study. J Clin Oncol. 2021;40(7):729‐739. https://
doi.org/10.1200/jco.21.01234

7. Pasqualucci L, Khiabanian H, Fangazio M, et al. Genetics of follicular

lymphoma transformation. Cell Rep. 2014;6(1):130‐140. https://doi.
org/10.1016/J.CELREP.2013.12.027

8. Dave SS, Wright G, Tan B, et al. Prediction of survival in follicular

lymphoma based on molecular features of tumor‐infiltrating immune
cells. N Engl J Med. 2004;351(21):2159‐2169. https://doi.org/10.
1056/nejmoa041869

9. Glas AM, Knoops L, Delahaye L, et al. Gene‐expression and immu-

nohistochemical study of specific T‐cell subsets and accessory cell

types in the transformation and prognosis of follicular lymphoma.

J Clin Oncol. 2007;25(4):390‐398. https://doi.org/10.1200/JCO.

2006.06.1648

10. Byers RJ, Sakhinia E, Joseph P, et al. Clinical quantitation of immune

signature in follicular lymphoma by RT‐PCR‐based gene expression

profiling. Blood. 2008;111(9):4764‐4770. https://doi.org/10.1182/
blood‐2007‐10‐115915

11. Wahlin BE, Sander B, Christensson B, Kimby E. CD8+ T‐cell content
in diagnostic lymph nodes measured by flow cytometry is a predictor

of survival in follicular lymphoma. Clin Cancer Res. 2007;13(2):
388‐397. https://doi.org/10.1158/1078‐0432.CCR‐06‐1734

12. Sugimoto T, Watanabe T. Follicular lymphoma: the role of the tumor

microenvironment in prognosis, J Clin Exp Hematop. 2016;56(1):1‐19.
https://doi.org/10.3960/jslrt.56.1

13. Ochando J, Braza MS. T follicular helper cells: a potential therapeutic

target in follicular lymphoma. Oncotarget. Impact Journals LLC;

2017;8(67):112116‐112131. https://doi.org/10.18632/oncotarget.

22788

14. De Jong D, Koster A, Hagenbeek A, et al. Impact of the tumor

microenvironment on prognosis in follicular lymphoma is dependent

on specific treatment protocols. Haematologica. 2009;94(1):70‐77.
https://doi.org/10.3324/haematol.13574

15. Wahlin BE, Aggarwal M, Montes‐Moreno S, et al. A unifying micro-

environment model in follicular lymphoma: outcome is predicted by

programmed death‐1‐positive, regulatory, cytotoxic, and helper T

cells and macrophages. Clin Cancer Res. 2010;16(2):637‐650. https://
doi.org/10.1158/1078‐0432.CCR‐09‐2487

16. Saifi M, Maran A, Raynaud P, et al. High ratio of interfollicular CD8/

FOXP3‐positive regulatory T cells is associated with a high FLIPI

index and poor overall survival in follicular lymphoma. Exp Ther Med.
2010;1(6):933‐938. https://doi.org/10.3892/etm.2010.146

17. Mondello P, Fama A, Larson MC, et al. Lack of intrafollicular memory

CD4 + T cells is predictive of early clinical failure in newly diagnosed

follicular lymphoma. Blood Cancer J. 2021;11(7):130. https://doi.org/
10.1038/S41408‐021‐00521‐4

18. Tsakiroglou AM, Astley S, Dave M, et al. Immune infiltrate diversity

confers a good prognosis in follicular lymphoma. Cancer Immunol
Immunother. 2021;70(12):3573‐3585. https://doi.org/10.1007/

S00262‐021‐02945‐0
19. Taskinen M, Karjalainen‐Lindsberg ML, Nyman H, Eerola LM, Leppä

S. A high tumor‐associated macrophage content predicts favorable

outcome in follicular lymphoma patients treated with rituximab and

cyclophosphamide‐ doxorubicin‐vincristine‐prednisone. Clin Cancer
Res. 2007;13(19):5784‐5789. https://doi.org/10.1158/1078‐0432.
CCR‐07‐0778

20. Canioni D, Salles G, Mounier N, et al. High numbers of tumor‐
associated macrophages have an adverse prognostic value that

can be circumvented by rituximab in patients with follicular lym-

phoma enrolled onto the GELA‐GOELAMS FL‐2000 trial. J Clin
Oncol. 2008;26(3):440‐446. https://doi.org/10.1200/JCO.2007.12.

8298

21. Kridel R, Steidl C, Gascoyne RD. Tumor‐Associated macrophages in

diffuse large b‐cell lymphoma. Haematologica. 2015;100(2):143‐145.
https://doi.org/10.3324/haematol.2015.124008

22. Li J, Sun W, Subrahmanyam P, et al. NKT cell responses to B cell

lymphoma. Med Sci Open Access J. 2014;2(2):82‐97. https://doi.org/
10.3390/MEDSCI2020082

23. Klanova M, Oestergaard MZ, Trneny M, et al. Prognostic impact of

natural killer cell count in follicular lymphoma and diffuse large B‐
cell lymphoma patients treated with immunochemotherapy. Clin
Cancer Res. 2019;25(15):4632‐4643. https://doi.org/10.1158/1078‐
0432.CCR‐18‐3270

24. Ferrant J, Lhomme F, Le Gallou S, Irish JM, Roussel M. Circulating

myeloid regulatory cells: promising Biomarkers in B‐cell lymphomas.
Front Immunol. 2021;0:3686. https://doi.org/10.3389/FIMMU.2020.

623993

25. Ra M, Monabati A, Vyas M, et al. Myeloid cell nuclear differentiation

antigen is expressed in a subset of marginal zone lymphomas and is

useful in the differential diagnosis with follicular lymphoma. Hum
Pathol. 2014;45(8):1730‐1736. https://doi.org/10.1016/J.HUMPATH.

2014.04.004

26. Farinha P, Al‐Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD.

The architectural pattern of FOXP3‐positive T cells in follicular

lymphoma is an independent predictor of survival and histologic

transformation. Blood. 2010;115(2):289‐295. https://doi.org/10.

1182/blood‐2009‐07‐235598
27. Parwani AV. Next generation diagnostic pathology: use of digital

pathology and artificial intelligence tools to augment a pathological

diagnosis. Diagn Pathol. BioMed Central Ltd. 2019;14(1):138. https://

doi.org/10.1186/s13000‐019‐0921‐2
28. Syrykh C, Abreu A, Amara N, et al. Accurate diagnosis of lymphoma

on whole‐slide histopathology images using deep learning. NPJ Digit.
Med. 2020;3(1):1‐8. https://doi.org/10.1038/s41746‐020‐0272‐0

29. Miyoshi H, Sato K, Kabeya Y, et al. Deep learning shows the capa-

bility of high‐level computer‐aided diagnosis in malignant lymphoma.
Lab Invest. 2020;100(10):1300‐1310. https://doi.org/10.1038/

s41374‐020‐0442‐3
30. Albitar M, Zhang H, Goy AH, et al. Determining clinical course of

diffuse large B‐cell lymphoma using targeted transcriptome and

machine learning algorithms. Blood. 2021;138(Suppl 1):2395. https://
doi.org/10.1182/BLOOD‐2021‐148841

31. Senaras C, Niazi MKK, Arole V, et al. “Segmentation of follicles from

CD8‐stained slides of follicular lymphoma using deep learning.”

Medical Imaging 2019: Digital Pathology. 2019;10956:25. https://doi.
org/10.1117/12.2512262

32. Sander B, de Jong D, Rosenwald A, et al. The reliability of immu-

nohistochemical analysis of the tumor microenvironment in follicular

lymphoma: a validation study from the Lunenburg Lymphoma

12 - HAGOS ET AL.

https://doi.org/10.4084/MJHID.2017.010
https://doi.org/10.1038/s41572-019-0132-x
https://doi.org/10.1038/s41572-019-0132-x
https://doi.org/10.1371/JOURNAL.PONE.0212813
https://doi.org/10.1371/JOURNAL.PONE.0212813
https://doi.org/10.1371/journal.pone.0106745
https://doi.org/10.1371/journal.pone.0106745
https://doi.org/10.1200/JCO.2014.59.7534
https://doi.org/10.1200/jco.21.01234
https://doi.org/10.1200/jco.21.01234
https://doi.org/10.1016/J.CELREP.2013.12.027
https://doi.org/10.1016/J.CELREP.2013.12.027
https://doi.org/10.1056/nejmoa041869
https://doi.org/10.1056/nejmoa041869
https://doi.org/10.1200/JCO.2006.06.1648
https://doi.org/10.1200/JCO.2006.06.1648
https://doi.org/10.1182/blood-2007-10-115915
https://doi.org/10.1182/blood-2007-10-115915
https://doi.org/10.1158/1078-0432.CCR-06-1734
https://doi.org/10.3960/jslrt.56.1
https://doi.org/10.18632/oncotarget.22788
https://doi.org/10.18632/oncotarget.22788
https://doi.org/10.3324/haematol.13574
https://doi.org/10.1158/1078-0432.CCR-09-2487
https://doi.org/10.1158/1078-0432.CCR-09-2487
https://doi.org/10.3892/etm.2010.146
https://doi.org/10.1038/S41408-021-00521-4
https://doi.org/10.1038/S41408-021-00521-4
https://doi.org/10.1007/S00262-021-02945-0
https://doi.org/10.1007/S00262-021-02945-0
https://doi.org/10.1158/1078-0432.CCR-07-0778
https://doi.org/10.1158/1078-0432.CCR-07-0778
https://doi.org/10.1200/JCO.2007.12.8298
https://doi.org/10.1200/JCO.2007.12.8298
https://doi.org/10.3324/haematol.2015.124008
https://doi.org/10.3390/MEDSCI2020082
https://doi.org/10.3390/MEDSCI2020082
https://doi.org/10.1158/1078-0432.CCR-18-3270
https://doi.org/10.1158/1078-0432.CCR-18-3270
https://doi.org/10.3389/FIMMU.2020.623993
https://doi.org/10.3389/FIMMU.2020.623993
https://doi.org/10.1016/J.HUMPATH.2014.04.004
https://doi.org/10.1016/J.HUMPATH.2014.04.004
https://doi.org/10.1182/blood-2009-07-235598
https://doi.org/10.1182/blood-2009-07-235598
https://doi.org/10.1186/s13000-019-0921-2
https://doi.org/10.1186/s13000-019-0921-2
https://doi.org/10.1038/s41746-020-0272-0
https://doi.org/10.1038/s41374-020-0442-3
https://doi.org/10.1038/s41374-020-0442-3
https://doi.org/10.1182/BLOOD-2021-148841
https://doi.org/10.1182/BLOOD-2021-148841
https://doi.org/10.1117/12.2512262
https://doi.org/10.1117/12.2512262


Biomarker Consortium. Haematologica. 2014;99(4):715‐725. https://
doi.org/10.3324/haematol.2013.095257

33. CamDavidsonPilon/lifelines: 0.25.10; 2021. https://doi.org/10.5281/

ZENODO.4579431

34. Heindl A, Sestak I, Naidoo K, Cuzick J, Dowsett M, Yuan Y. Rele-

vance of spatial heterogeneity of immune infiltration for predicting

risk of recurrence after endocrine therapy of ER+ breast cancer.

J Natl Cancer Inst. 2018;110(2):166‐175. https://doi.org/10.1093/
jnci/djx137

35. Maley CC, Koelble K, Natrajan R, Aktipis A, Yuan Y. An ecological

measure of immune‐cancer colocalization as a prognostic factor for
breast cancer. Breast Cancer Res. 2015;17(1):131. https://doi.org/10.
1186/s13058‐015‐0638‐4

36. Yuan Y. Spatial heterogeneity in the tumor microenvironment. Cold
Spring Harb Perspect Med. 2016;6(8):a026583. https://doi.org/10.
1101/cshperspect.a026583

37. Jindal A, Gupta P, Jayadeva, Sengupta D. Discovery of rare cells

from voluminous single cell expression data. Nat Commun.
2018;9:4719. https://doi.org/10.1038/s41467‐018‐07234‐6

38. Jiang L, Chen H, Pinello L, Yuan GC. GiniClust: detecting rare cell

types from single‐cell gene expression data with Gini index. Genome
Biol. 2016;17(1):1‐13. https://doi.org/10.1186/S13059‐016‐1010‐4/
FIGURES/6

39. Gershon RK, Kondo K. Cell interactions in the induction of tolerance:

the role of thymic lymphocytes. Immunology. 1970;18(5):723. http://
doi.org/10.1038/pmc/articles/PMC1455602/?report=abstract.
Accessed: Oct. 21, 2021.

40. Kiniwa Y, Miyahara Y, Wang HY, et al. CD8+ Foxp3+ regulatory T

cells mediate immunosuppression in prostate cancer. Clin Cancer Res.
2007;13(23):6947‐6958. https://doi.org/10.1158/1078‐0432.CCR‐
07‐0842

41. Hao J, Wang H, Song L, et al. Infiltration of CD8+ FOXP3+ T cells,

CD8+ T cells, and FOXP3+ T cells in non‐small cell lung cancer

microenvironment. Int J Clin Exp Pathol. 2020;13(5):880‐888.
Accessed: Feb. 25, 2021. http://www.ncbi.nlm.nih.gov/pubmed/325

09058

42. Sobhani I, Le Gouvello S. Critical role for CD8+FoxP3+ regulatory T

cells in colon immune response in humans. Gut. BMJ Publishing

Group; 2009;58(6):743‐744. https://doi.org/10.1136/gut.2008.175521
43. Mayer CT, Floess S, Baru AM, Lahl K, Huehn J, Sparwasser T. CD8

+Foxp3+ T cells share developmental and phenotypic features with

classical CD4+Foxp3+ regulatory T cells but lack potent suppressive

activity. Eur J Immunol. 2011;41(3):716‐725. https://doi.org/10.

1002/eji.201040913

44. Le DT, Ladle BH, Lee T, et al. CD8+Foxp3+ tumor infiltrating lym-

phocytes accumulate in the context of an effective anti‐tumor

response. Int J Cancer. 2011;129(3):636‐647. https://doi.org/10.

1002/IJC.25693

45. Mrtha RV‐L, Jorge V‐O, Laura M‐C, Ruben L‐S, Martha CM‐L.
Description of CD8+ regulatory T lymphocytes and their specific

intervention in graft‐versus‐host and infectious diseases, autoim-

munity, and cancer. J Immunol Res. 2018;2018:1‐16. https://doi.org/
10.1155/2018/3758713

46. Madeleine RB, Wendy BS, van den Michiel B, van Han KJ, Blanca S.

Molecular genetics of relapsed diffuse large B‐cell lymphoma: insight
into mechanisms of therapy resistance. Cancers (Basel).
2020;12(12):1‐26. https://doi.org/10.3390/CANCERS12123553

47. Nana HO, Ji‐Won J, Raymond JS, James WW. CD4+/CD8+ double‐
positive T cells: more than just a developmental stage? J Leukoc Biol.
2015;97(1):31‐38. https://doi.org/10.1189/JLB.1RU0814‐382

48. Desfrançois J, Moreau‐Aubry A, Vignard V, et al. Double positive

CD4CD8 αβ T cells: a new tumor‐reactive population in human

melanomas. PLoS ONE. 2010;5(1):e8437. https://doi.org/10.1371/
JOURNAL.PONE.0008437

49. Aliyah R, Kaaren RK, Frederic IP, Nancy HL, Robert PH. A double‐
positive CD4+CD8+ T‐cell population is commonly found in

nodular lymphocyte predominant Hodgkin lymphoma. Am J Clin
Pathol. 2006;126(5):805‐814. https://doi.org/10.1309/Y8KD‐32QG‐
RYFN‐1XQX

50. Rosanne S, Peng L, Warren JL. Biology and regulation of IL‐2: from
molecular mechanisms to human therapy. Nat Rev Immunol.
2018;18(10):648‐659. https://doi.org/10.1038/S41577‐018‐0046‐Y

51. Kumar E, Pickard L, Okosun J. Pathogenesis of follicular lymphoma:

genetics to the microenvironment to clinical translation. Br J Hae-
matol. 2021;194(5):810‐821. https://doi.org/10.1111/BJH.17383

SUPPORTING INFORMATION

Additional supporting information can be found online in the Sup-

porting Information section at the end of this article.

How to cite this article: Hagos YB, Akarca AU, Ramsay A,

et al. High inter‐follicular spatial co‐localization of CD8

+FOXP3+ with CD4+CD8+ cells predicts favorable outcome

in follicular lymphoma. Hematol Oncol. 2022;1‐13. https://doi.
org/10.1002/hon.3003

HAGOS ET AL. - 13

https://doi.org/10.3324/haematol.2013.095257
https://doi.org/10.3324/haematol.2013.095257
https://doi.org/10.5281/ZENODO.4579431
https://doi.org/10.5281/ZENODO.4579431
https://doi.org/10.1093/jnci/djx137
https://doi.org/10.1093/jnci/djx137
https://doi.org/10.1186/s13058-015-0638-4
https://doi.org/10.1186/s13058-015-0638-4
https://doi.org/10.1101/cshperspect.a026583
https://doi.org/10.1101/cshperspect.a026583
https://doi.org/10.1038/s41467-018-07234-6
https://doi.org/10.1186/S13059-016-1010-4/FIGURES/6
https://doi.org/10.1186/S13059-016-1010-4/FIGURES/6
http://doi.org/10.1038/pmc/articles/PMC1455602/?report%3Dabstract
http://doi.org/10.1038/pmc/articles/PMC1455602/?report%3Dabstract
https://doi.org/10.1158/1078-0432.CCR-07-0842
https://doi.org/10.1158/1078-0432.CCR-07-0842
http://www.ncbi.nlm.nih.gov/pubmed/32509058
http://www.ncbi.nlm.nih.gov/pubmed/32509058
https://doi.org/10.1136/gut.2008.175521
https://doi.org/10.1002/eji.201040913
https://doi.org/10.1002/eji.201040913
https://doi.org/10.1002/IJC.25693
https://doi.org/10.1002/IJC.25693
https://doi.org/10.1155/2018/3758713
https://doi.org/10.1155/2018/3758713
https://doi.org/10.3390/CANCERS12123553
https://doi.org/10.1189/JLB.1RU0814-382
https://doi.org/10.1371/JOURNAL.PONE.0008437
https://doi.org/10.1371/JOURNAL.PONE.0008437
https://doi.org/10.1309/Y8KD-32QG-RYFN-1XQX
https://doi.org/10.1309/Y8KD-32QG-RYFN-1XQX
https://doi.org/10.1038/S41577-018-0046-Y
https://doi.org/10.1111/BJH.17383
https://doi.org/10.1002/hon.3003
https://doi.org/10.1002/hon.3003

	High inter‐follicular spatial co‐localization of CD8+FOXP3+ with CD4+CD8+ cells predicts favorable outcome in follicular ly ...
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Cohort study
	2.2 | Antibodies panels and multispectral immunofluorescence
	2.3 | Statistical analysis
	2.4 | Code availability

	3 | RESULTS
	3.1 | Patient clinical characteristics
	3.2 | Deep learning for immune phenotyping in multispectral immunofluorescence images
	3.3 | Image and spatial analysis tailored to follicular lymphoma cellular compartments
	3.4 | Deep learning models accurately map single cells in multispectral immunofluorescence images
	3.5 | Decreased inter‐follicular CD8+FOXP3+ cells is associated with relapse
	3.6 | Clinical relevance of immune cell co‐localization
	3.7 | Decreased inter‐follicular CD8+FOXP3+ cells density and spatial co‐localization of CD8+FOXP3+ with CD4+CD8+ cells are ...

	4 | DISCUSSION
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST
	AUTHOR’S CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT


